Amaxa™ 96-well Shuttle™ Basic Protocol for Primary Mammalian Smooth Muscle Cells (SMC)

Cell Description

Cells derived from mammalian smooth muscle cell tissues from various organs; adherent long tapering cells.

Note
Mammalian smooth muscle cells display significant phenotypic variations due to the wide range of both species and tissues from which they may be sourced.

This basic protocol describes how to easily define optimal Nucleofection™ Conditions for different mammalian smooth muscle cells. We recommend to first test a set of pre-selected Nucleofector™ Programs together with the P1 Primary Cell 96-well Nucleofector™ Kit.

If you have questions regarding your epithelial cells of interest, please contact our Scientific Support Team for further help with the optimization.

Product Description

Recommended Kits
P1 Primary Cell 96-well Nucleofector™ Kits

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Size (reactions)</th>
<th>P1 Primary Cell 96-well Nucleofector™ Solution</th>
<th>Supplement</th>
<th>pmaxGFP™ Vector (1.0 μg/μl in 10 mM Tris pH 8.0)</th>
<th>Nucleocuvette™ Plate(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V4SP-1960</td>
<td>1×96</td>
<td>2.25 ml</td>
<td>0.5 ml</td>
<td>50 μg</td>
<td>1</td>
</tr>
</tbody>
</table>

Storage and Stability
Store Nucleofector™ Solution, Supplement and pmaxGFP™ Vector at 4°C. For long term storage pmaxGFP™ Vector is ideally stored at -20°C. The expiry date is printed on the solution box. Once the Nucleofector™ Supplement is added to the Nucleofector™ Solution it is stable for three months at 4°C.

Note
96-well Nucleofector™ Solutions can only be used with conductive polymer cuvettes, i.e. in the 96-well Shuttle™ Device and in the 4D-Nucleofector™ System. They are not compatible with the Nucleofector™ II/2b Device.
Optimization Guidelines

The initial optimization experiment is comprised of 14 reactions, using 1 Nucleocuvette™ Module: 6 different Nucleofector™ Programs are tested in duplicate plus 1 control. The Nucleofection™ Condition which turns out to be the most appropriate should be used for all subsequent transfections.

<table>
<thead>
<tr>
<th>1×10^5 cells/sample</th>
<th>2</th>
<th>3—12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>96-FF-130</td>
<td>96-FF-130</td>
</tr>
<tr>
<td>B</td>
<td>96-FG-113</td>
<td>96-FG-113</td>
</tr>
<tr>
<td>C</td>
<td>96-DS-137</td>
<td>96-DS-137</td>
</tr>
<tr>
<td>D</td>
<td>96-CM-137</td>
<td>96-CM-137</td>
</tr>
<tr>
<td>E</td>
<td>96-EH-106</td>
<td>96-EH-106</td>
</tr>
<tr>
<td>F</td>
<td>96-FP-113</td>
<td>96-FP-113</td>
</tr>
<tr>
<td>G</td>
<td>negative control (no program)</td>
<td>negative control (no program)</td>
</tr>
<tr>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

The P1 Primary Cell 96-well Nucleofector™ Kit has been tested successfully for the following Clonetics™ Primary Cells provided by Lonza:

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Lonza Cat. No.</th>
<th>Optimal Program</th>
<th>Transfection efficiency</th>
<th>Viability*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AoSMC (Human Aortic Smooth Muscle Cells)</td>
<td>CC-2571</td>
<td>96-EH-106</td>
<td>74 %</td>
<td>92 %</td>
</tr>
<tr>
<td>CASMC (Human Coronary Artery Smooth Muscle Cells)</td>
<td>CC-2583</td>
<td>96-FP-113</td>
<td>67 %</td>
<td>86 %</td>
</tr>
<tr>
<td>PASMC (Human Pulmonary Artery Smooth Muscle Cells)</td>
<td>CC-2581</td>
<td>96-FG-113</td>
<td>81 %</td>
<td>67 %</td>
</tr>
</tbody>
</table>

*Determined by ViaLight™ Plus Kit, Lonza
BioResearch
Amaxa™ 96-well Shuttle™ Basic Protocol for Primary Mammalian Smooth Muscle Cells (SMC)

Required Material

Note
Please make sure that the entire supplement is added to the Nucleofector™ Solution.

- Nucleofector™ 96-well Shuttle System (Nucleofector™ Device, version IIS; 96-well Shuttle™ Device; laptop with 96-well Shuttle™ Software)
- Supplemented 96-well Nucleofector™ Solution at room temperature for Nucleofection™
- Supplied Nucleocuvette™ Plate[s]
- Supplied pmaxGFP™ Vector, stock solution 1 µg/µl

Note
Volume of substrate solution added to each sample should not exceed 10% of the total reaction volume (2 µl for 20 µl reactions). For positive control using pmaxGFP™ Vector, please dilute the stock solution to reach the appropriate working concentration.

- Substrate of interest, highly purified, preferably by using endotoxin free kits; A260 : A280 ratio should be at least 1.8
- 96-well culture plates or culture plates of your choice
- For trypsinization: Please use trypsin as recommended by the cell supplier e.g. ReagentPack™ Subculture Reagent Kit containing Trypsin/EDTA, HEPES Buffered Saline Solution (HEPES-BSS) and Trypsin Neutralizing Solution (TNS) [Lonza; Cat. No. CC-5034]
- Culture medium: Please use media as recommended by the cell supplier e.g. SmGM™-2 BulletKit™ [Lonza; Cat. No. CC-3182]
- Prewarm appropriate volume of culture media at 37°C (160 µl per sample)
- Appropriate number of cells [1×10⁵ cells per sample; minimal cell number: 5×10⁴ cells; a lower cell number may lead to a major increase in cell mortality]

1. Pre Nucleofection™

Note
Transfection results may be cell-source dependent.

Cell culture recommendations
1.1 Replace medium every 1–3 days
1.2 Cells should be passaged after reaching 70–80% confluency
1.3 Do not use cells after passage 9 for Nucleofection™ as this may lead to reduced viability and transfection efficiency
1.4 Cells should be passaged 2–4 days before Nucleofection™ depending on growth rate of cells

Note
Culture conditions may differ between cell types. Please follow your established procedure or the supplier’s recommendations.

Trypsinization

Note
Please follow your established procedure or the supplier’s recommendations (e.g. for Aortic Smooth Muscle Cells [Lonza; Cat. No. CC-2571] follow procedure described below).

1.5 Remove media from the cultured cells and wash cells once with HEPES-BSS
1.6 For harvesting, incubate the cells ~5 minutes at 37°C with recommended volume of indicated trypsinization reagent [please see required material]
1.7 Inactivate trypsin with TNS once the majority of the cells (>90%) have been detached

2. Nucleofection™

One Nucleofection™ Sample Contains

- 1×10⁵ cells
- 0.2–0.4 µg plasmid DNA [in 1–2 µl H₂O or TE] or 0.2 µg pmaxGFP™ Vector or 30–300 nM siRNA [0.6–6 pmol/sample]
- 20 µl P1 Primary Cell 96-well Nucleofector™ Solution

2.1 Please make sure that the entire supplement is added to the Nucleofector™ Solution
2.2 Start Nucleofector™ 96-well Shuttle™ Software, verify device connection and upload experimental parameter file [for details see Manual "Nucleofector™ 96-well Shuttle™ System"]
2.3 Select appropriate Nucleofector™ Program. Please try all 6 Nucleofector™ Programs {96-FF-130, 96-FG-113, 96-DS-137, 96-CM-137, 96-EH-106 and 96-FP-113} initially to determine the most appropriate Nucleofection™ condition for your specific smooth muscle cell type
2.4 Prepare cell culture plates by filling the appropriate number of wells with the desired volume of the recommended culture media, e.g. 80 μl* (see note at the end of this chapter) for one well of a 96-well plate, and pre-incubate/equilibrates plates in a humidified 37°C/5% CO₂ incubator.

2.5 Pre-warm an aliquot of culture media to 37°C (80 μl* per sample).

2.6 Prepare 0.2–0.4 μg plasmid DNA or 0.2 μg pmaxGFP™ Vector (recommended for initial optimization). For siRNA experiments we recommend to start using 30–300 nM siRNA (0.6–6 pmol/sample).

2.7 Harvest the cells by trypsinization (please see 1.5–1.7).

2.8 Count an aliquot of the trypsinized cells and determine cell density.

2.9 Centrifuge the required number of cells (1×10⁵ cells per sample) at 100×g for 10 minutes at room temperature.

2.10 Resuspend the cell pellet carefully at room temperature using 20 μl 96-well Nucleofector™ Solution per sample.

A: One or several substrates (DNAs or RNAs) in multiples

- Prepare mastermixes by dividing cell suspension according to number of substrates.
- Add required amount of substrates to each aliquot (max. 2 μl per sample).
- Transfer 20 μl of mastermixes into the wells of the 96-well Nucleocuvette™ Modules.

B: Multiple substrates (e.g. Library Transfection)

- Pipette 20 μl of cell suspension into each well of a sterile U- or V-bottom 96-well microtiter plate.
- Add 2 μl substrates (maximum) to each well.
- Transfer 20 μl of cells with substrates into the wells of the 96-well Nucleocuvette™ Modules.

Note

It is advisable to pre-dispense each cell suspension into a sterile round-bottom 96-well plate or to pipet from a pipetting reservoir for multi-channel pipettes. Use a multi-channel or single-channel pipette with suitable pipette tips. As leaving cells in 96-well Nucleofector™ Solution for extended periods of time may lead to reduced transfection efficiency and viability it is important to work as quickly as possible. Avoid air bubbles while pipetting.

2.15 Resuspend cells with desired volume of pre-warmed media (maximum cuvette volume 200 μl). Mix cells by gently pipetting up and down two to three times. Recommendation for 96-well plates: Resuspend cells in 80 μl* of pre-warmed media.

2.16 Plate desired amount of cells in culture system of your choice. Recommendation for 96-well plates: Transfer 20 μl of resuspended cells to 80 μl pre-warmed media prepared in 96-well culture plates.

Note

The indicated plating cell numbers and volumes produce optimal 96-well Nucleofection™ Results in most cases. However, you may wish to test an extended range of cell numbers depending on your specific needs. Cell numbers and volumes can be adapted such that fewer cells are transferred or duplicate plates can be seeded.

3. Post Nucleofection™

3.1 Incubate the plating cells in a humidified 37°C/5% CO₂ incubator until analysis. Gene expression or down-regulation is often detectable after only 4–8 hours. To validate optimal conditions for down regulation we recommend performing a time course experiment.

2.11 Gently tap the Nucleocuvette™ Plate to make sure the sample covers the bottom of the well.

2.12 Place 96-well Nucleocuvette™ Plate with closed lid into the retainer of the 96-well Shuttle™. Well “A1” must be in upper left position.

2.13 Start 96-well Nucleofection™ Process by either pressing “Upload and start” in the 96-well Shuttle™ Software or pressing “Upload” in the 96-well Shuttle™ Software and then the “Start” button at the 96-well Shuttle™ (for both options please refer to the respective Manual).

2.14 After run completion, open retainer and carefully remove the 96-well Nucleocuvette™ Plate from the retainer.
Additional Information

Up-To-Date List of all Nucleofector™ References
www.lonza.com/nucleofection-citations

Technical Assistance and Scientific Support
USA/Canada
Tel 800 521 0390 (toll-free)
Fax 301 845 8338
scientific.support@lonza.com

Europe and Rest of World
Tel +49 221 99199 400
Fax +49 221 99199 499
scientific.support.eu@lonza.com

www.lonza.com

Lonza Cologne AG – 50829 Cologne, Germany

Please note that the Amaxa™ Nucleofector™ Technology is not intended to be used for diagnostic purposes or for testing or treatment in humans. The Nucleofector™ Technology, comprising Nucleofection™ Process, Nucleofector™ Device, Nucleofector™ Solutions, Nucleofector™ 96-well Shuttle™ System and 96-well Nucleocuvette™ Plates and Modules is covered by patent and/or patent pending rights owned by Lonza Cologne AG. Amaxa, Nucleofector, Nucleofection, 96-well Shuttle, Nucleocuvette, maxGFP, Dinetics, Reagent Pack, 5mEM and BulletKit are either registered trademarks or trademarks of the Lonza Group or its affiliates. TallTips are a registered trademark of Matrix Technologies Corporation. Other product and company names mentioned herein are the trademarks of their respective owners.

This kit contains a proprietary nucleic acid coding for a proprietary copepod fluorescent protein intended to be used as a positive control with this Lonza product only. Any use of the proprietary nucleic acid or protein other than as a positive control with this Lonza product is strictly prohibited. USE IN ANY OTHER APPLICATION REQUIRES A LICENSE FROM EVROGEN. To obtain such a license, please contact Evrogen at license@evrogen.com. The CMV promoter is covered under U.S. Patents 5,168,062 and 5,385,839 and its use is permitted for research purposes only. Any other use of the CMV promoter requires a license from the University of Iowa Research Foundation, 214 Technology Innovation Center, Iowa City, IA 52242. The use of this product in conjunction with materials or methods of third parties may require a license by a third party. User shall be fully responsible for determining whether and from which third party it requires such license and for the obtainment of such license. No statement is intended or should be construed as a recommendation to infringe any existing patent.

© Copyright 2009, Lonza Cologne AG. All rights reserved – D4SP-0015 2011-01